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Abstract

Matrix completion, a crucial sub-problem of non-convex matrix sensing, is inte-
gral to numerous machine learning applications such as recommender systems.
Traditionally, matrix completion suffers from limited theoretical recovery guaran-
tees, primarily due to its dependency on parameters like incoherence. This paper
introduces an innovative method that resolves matrix completion challenges by
transforming them into noisy matrix sensing problems, which in turn warrants
the use of over-parametrization to achieve global guarantees. This approach cir-
cumvents traditional limitations by dropping requirements on observation patterns
and incoherence. This novel strategy broadens the theoretical framework via the
introduction of ε-MC problems and paves way for more effective handling of
complex optimization tasks in real-world scenarios with incomplete data.

1 Introduction

Matrix completion (MC) and matrix sensing (MS) are pivotal in the fields of machine learning and
signal processing, tasked with the reconstruction of a low-rank matrix from partial observations or
linear measurements. These problems have broad applications ranging from collaborative filtering in
recommendation systems (Koren et al., 2009), motion detection (Fattahi and Sojoudi, 2020), power
system state estimation (Zhang et al., 2017; Jin et al., 2019) to image recovery (Gu et al., 2014)
and biomedical imaging (Lustig et al., 2008). More importantly, since this framework can represent
arbitrary polynomial optimization problems (Molybog et al., 2020) and is identical to the training of
two-layer quadratic neural networks (Li et al., 2018), it has much greater theoretical implications in
the machine learning community outside of its direct applications.

Matrix sensing generally involves recovering a matrix from a set of linear measurements, formulated
as:

min
X∈Rn×rsearch

1

2
‖‖A(XXT )− b‖22 := f(XXT ) := h(X) (MS) (1)

Here, A acts on the rank-r matrix product XXT and compares it to a vector of observations
b = (M∗), with M∗ being the rank-r ground truth matrix of interest. A(·) is comprised of m
symmetric sensing matrices, and A(M) = [〈A1,M〉, . . . , 〈Am,M〉]T . Without explicit explanation,
we set rsearch = r. The matrix completion challenge, a special case of matrix sensing, is given by:

min
X∈Rn×r

1

2
‖AΩ(XXT −M∗)‖22 (MC) (2)

where Ω ⊆ [n]× [n] represents the observed entries of an n× n matrix. We use the notation NΩ to
denote the matrix where

(NΩ)i,j = Ni,j · 1(i,j)∈Ω (3)

for any arbitrary N ∈ Rn×n. AΩ(·) is used to specifically denote the sensing operator of the matrix
completion problem, where AΩ(M) = vec(MΩ).
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Matrix completion is distinguished by its reliance on the sample rate and the matrix’s incoherence
parameters. These parameters dictate the spread of matrix information across its entries and singular
vectors (Candès and Recht, 2009; Candès and Tao, 2010). This dependency complicates matrix
completion compared to matrix sensing, where challenges are often more tractable due to properties
like Restricted Strong Convexity (RSC) and Smoothness (RSS), or the Restricted Isometry Property
(RIP) (Recht et al., 2010).
Definition 1 (Restricted Strong Smoothness (RSS) and Restricted Strong Convexity (RSC)). The
linear operator A : Rn×n 7→ Rm satisfies the (Ls, r)-RSS property and the (αs, r)-RSC property if

f(M)− f(N) ≤ 〈M −N,∇f(N)〉+
Ls
2
‖M −N‖2F

f(M)− f(N) ≥ 〈M −N,∇f(N)〉+
αs
2
‖M −N‖2F

are satisfied, respectively for all M,N ∈ Rn with rank(M), rank(N) ≤ r. Note that RSS and RSC
provide a more expressible way to represent the RIP property, with δr = (Ls − αs)/(Ls + αs).
Definition 2 (µ0-incoherence). (Ge et al., 2017) Given a rank-r matrix M ∈ Rn1×n2 , we say it is
µ0-incoherent if its truncated SVD decomposition UΣV > satisfies

‖e>i U‖2 ≤
√
µ0r/n1, ‖e>j V ‖2 ≤

√
µ0r/n2, ∀i, j ∈ [n1], [n2]

where ei is the i-th standard basis of Rn1 and ej is the j-th standard basis of Rn2 .

Since µ0 is hard to gauge prior to solving this problem, applying matrix completion guarantees can
be more challenging than its highly-related matrix sensing problem. Thus, this paper introduces
novel methodologies to solve matrix completion, thereby broadening its theoretical accessibility and
enhancing its practical applicability. The proposed approaches aim to reduce the reliance on complex
parameters like incoherence, making these powerful techniques more accessible to a wider range of
real-world applications.

1.1 Related Works

There are already a plethora of works devoted to the solving of matrix sensing and matrix completion
problems. In particular, we give a brief review of the works that focus on giving recovery guarantees
of low-rank matrix recovery problems.

Matrix Sensing

It has long been known since the landmark papers from Recht et al. (2010); Candès and Tao (2010)
that the RIP constants (see Definition 1) play a central role in determining whether this non-convex
problem could be solved to optimality with guarantees. It is widely understood that δ2r = 1/2 is
a sharp threshold for the factorized Burer-Monteiro (BM) formulation (1) (Zhang et al., 2021; Ma
et al., 2022), and a sufficient bound for SDP relaxation (Cai and Zhang, 2013).

Recent studies have highlighted over-parametrization as a crucial strategy in matrix sensing when RIP
constants are suboptimal (i.e., δ2r ≥ 1/1). Research by Zhang (2021, 2022) examined cases where
the search rank rsearch exceeds the true rank r, thus increasing the problem’s parametrization. Zhang
(2022) demonstrated that for rsearch > r[(1 + δn)/(1− δn)− 1]2/4 and r∗ ≤ r < n, each solution
X̂ satisfies X̂X̂> = M∗. Similarly, Ma and Fattahi (2022) established analogous results under
RIP-type conditions for the `1 loss. Setting rsearch = n, the most extreme case, equates the problem’s
parametrization to that of SDP relaxation. Here, Yalcin et al. (2023) showed that the RIP threshold
for exact recovery using SDP can approach 1 when M∗ has a high true rank, thus underscoring
the efficacy of over-parametrization. Nevertheless, the practical applicability of these conditions is
limited, leading Ma et al. (2023) to explore tensor-based optimizations inspired by Sums-of-Squares
to navigate non-convex landscapes in high δ2r scenarios. Despite its utility in resolving spurious
solutions, this tensor approach’s applicability to matrix completion remains constrained by the need
for a valid RIP constant.

Matrix Completion

The foundational work by Candès and Recht (2009) established that exact matrix recovery is possible
from few entries, requiring a sample size of µ0n

1.2r log(n) for n × n matrices of rank r with
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incoherence parameter µ0. Enhancements in recovery guarantees and computational efficiencies
followed, including spectral-gradient descent algorithms by Keshavan et al. (2010) and deeper insights
into incoherence by Candès and Tao (2010). Studies by Recht (2011) and Gross (2011) expanded on
these by demonstrating successful recovery without uniform random sampling, while Ding and Chen
(2020) refined sampling orders further to µ0r log(µ0r)n log(n).

Research into Burer-Monteiro factorization has explored non-convex optimization strategies for matrix
completion, including greedy algorithms (Lee and Bresler, 2010; Wang et al., 2014), alternating
minimization (Haldar and Hernando, 2009; Tanner and Wei, 2016; Wen et al., 2012), and Riemannian
optimization (Mishra et al., 2014; Dai and Milenkovic, 2010)—reviewed comprehensively in Nguyen
et al. (2019). Although lacking explicit recovery guarantees, these methods demonstrate empirical
effectiveness, with some, like ADMiRA (Lee and Bresler, 2010), dependent on RIP conditions not
generally applicable in matrix completion.

Recent developments (Ge et al., 2016, 2017; Du et al., 2017) have provided robust recovery guarantees
for matrix completion using gradient descent and variants. These studies confirm that absent spurious
solutions if each entry is observed with a probability p ≥ poly(κ, r, µ0, log n)/n, ensuring the
success of BM in polynomial time with saddle-escaping algorithms, reflecting SDP literature findings.
This raises the question of applying matrix sensing’s RIP-based literature to matrix completion, an
area that remains largely unexplored despite initial efforts like Zhang et al. (2023) to bridge this
theoretical gap.

1.2 Our Approach and Main Contributions

In an effort to bridge the theoretical gaps identified in matrix completion (MC) problems, our research
introduces a novel framework designed to imbue these problems with Restricted Isometry Property
(RIP) characteristics, albeit with a trade-off in solution precision. The core of our methodology
involves strategically perturbing the sensing matrices to make their nullspace to be trivial and
employing over-parametrization in problem solving. Here are the principal steps of our approach:

1. Perturbation for RIP Compliance: We modify the original MC problem to enforce a
valid RIP constant. This is achieved by introducing controlled perturbations to the sensing
matrices, transforming a MC scenario into a manageable noisy MS problem. This step is
crucial for aligning the MC problem with the more favorable theoretical properties of MS.

2. Verification of Solution Fidelity: We establish that the global solution to the perturbed
problem will be close to the ground truth M∗ with high probability under mild assumptions.

3. Adaptation of Lifted Tensor Framework: We extend the lifted tensor framework, origi-
nally discussed in Ma et al. (2024), to our perturbed MS problem. This is because we need
the power of over-parametrization to handle the perturbed MS problem with very high RIP
constants.

While the details of these steps might appear counter-intuitive at first glance, we will provide a
thorough exposition in subsequent sections to clarify our methods and findings. Moreover, this
strategy leads to two significant contributions to the field of low-rank matrix recovery:

• Proposes a framework to perform matrix completion with global guarantees without the
need for the ground truth to obey incoherence conditions or for the observed entries to
have certain structures, enabling a much wider range of MC problems to be solved with
guarantees.

• We validate that the lifted tensor framework (Ma et al., 2023, 2024) remains effective in
scenarios with noise corruption, thereby expanding its utility and robustness.

While this work specifically employs the lifted tensor framework to address the perturbed MC
problem, our formulation is designed to be versatile, accommodating various solution methodologies.
According to our theoretical guarantees, any method that resolves the problem with some degree of
certainty can achieve a solution that closely approximates the true matrix M∗. This underscores the
robustness and adaptability of our reformulation, highlighting its potential to effectively handle a
wide range of scenarios in matrix recovery.
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2 Notation

This document utilizes several standard notations. Scalar values such as σi(M) and λi(M) represent
the i-th largest singular value and eigenvalue of matrix M , respectively. The Euclidean norm of a
vector v is denoted as ‖v‖, while ‖M‖F and ‖M‖2 are used for the Frobenius and induced l2 norms
of a matrix M . Vectorization of matrix M is performed by vec(M), which stacks the columns of M
into a vector. Conversely, mat(v) transforms a vector v ∈ Rn2

into a square matrix M . The set of
integers from 1 to n is expressed as [n]. For notation in operations, ◦l indicates a repeated Cartesian
product,� refers to the Kronecker product, and⊗ signifies the tensor outer product. If these notations
come with subscripts, they denote the dimension along which the operation is performed. Finally, if
S ∈ [n]× [m] represents a subset of indices of a n×m matrix, then NS refers to the sub-matrix of
N ∈ Rn×m relevant to S as per (3), and ‖N‖S,F denotes the Frobenius norm of NS .

3 The Perturbed Matrix Completion Formulation

As explained above, most literature regarding the recovery guarantees of matrix sensing problems
require some valid RIP constant. However, the attainment of such a constant automatically implies
a trivial nullspace, meaning that A only maps a zero matrix to a zero vector, which is impossible
for matrix completion problems. To demonstrate why this is, let’s consider a 2× 2 matrix recovery
problem, and say we observed three entries of some M ∈ R2×2 except for the lower-right entry. This
will correspond to the case where

AΩ(M) = vec(

[
1 1
1 0

]
�M) =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 vec(M) := TΩ vec(M) ∈ R4 (4)

For this AΩ to exhibit any RIP constant δ < 1, it is required that ‖AΩ(M)‖22 ≥ (1 − δ)‖M‖2F ,
meaning that the TΩ matrix above cannot output 0 unless M is a zero matrix. Nevertheless, for
this specific example, even if we observed three out of four entries, we can simply set vec(M) =
[0, 0, 0, 1]> to make AΩ(M) = 0, violating the RIP condition. This is a simple example showing
us that RIP condition will not hold for matrix completion problems unless all entries are observed,
regardless of its size. Therefore, it begs the question of whether we could find a simple way to let MC
problems exhibit RIP property without changing its solution?

Despite this limitation, a surprisingly simple solution exists to impart the RIP property to matrix
completion problems. The primary issue is the zero entries in the diagonal of TΩ, contributing to a
non-trivial nullspace. By perturbing these zero entries slightly with a small number ε ∈ (0, 1], we can
eliminate the nullspace. Revisiting (4), consider a perturbed sensing operator AΩ,ε:

AΩ,ε(M) = vec

([
1 1
1 ε

]
�M

)
=

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 ε

 vec(M) := TΩ,ε vec(M) (5)

in which TΩ,ε has a trivial nullspace as promised. However, different operators lead to different
observations. For example, when considering the case of (4), using AΩ and AΩ,ε on the same matrix
results in:

AΩ(M) =

M1,1

M1,2

M2,1

0

 −→ AΩ,ε(M) =

M1,1

M1,2

M2,1

εM2,2


Therefore, given a ground truth matrix M∗, the normal matrix completion problem will give you an
observation

b = AΩ(M∗) = AΩ,ε(M
∗) + wε, wε =

[
0 0 0 −εM∗2,2

]>
(6)

where wε ∈ Rn2

can be considered a noise term. With this idea in place, we formally introduce our
perturbed MC problem to solve:

min
X∈Rn×rsearch

‖AΩ,ε(XX
T )− b‖22 := fwε(XX

>) := hwε(X) (ε-MC) (7)
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Essentially, we’re transforming a noiseless matrix completion problem into a noisy matrix sens-
ing problem with operator AΩ,ε and deterministic noise wε. This approach, notably, ensures the
attainment of valid RSS/RSC parameters, equivalent to RIP constants.
Lemma 1. Given an arbitrary matrix completion problem with sensing operator AΩ, if this operator
is perturbed to produce AΩ,ε according to (5) with a scalar ε ∈ (0, 1], then the ε-MC problem will
exhibit (1, n)-RSS property and the (ε2, n)-RSC property.

The proof is straightforward and thus omitted for brevity. With that said, another major challenge
that the perturbed formulation of ε-MC problems brings is that the global solution of ε-MC might not
be M∗ anymore. This can be easily seen since ‖AΩ,ε(M

∗)− b‖22 6= 0. As a result, even if we were
able to find the global optima of (7), we may still fail our mission to find M∗. Therefore, one thing
that we hope to investigate is under what conditions can the ground truth be preserved. Inspired by
Ma and Fattahi (2023), we hope to link it with the number of corrupted observations. If we adopt
the standard assumption that each entry of the matrix is independently observed with probability p,
then we could generalize this observation by linking it to p. As our next step, we show that the global
solution of (7), denoted as M†, will be very close to M∗ with high probability, and we can further
achieve a tradeoff tradeoff between sample rate p and geometric uniformity captured by ε.

We will briefly go over the high-level ideas in this derivation and present our formal theorem in
the end. Since we assumed that M† is the global optimum of (7), then by definition it gives that
fwε(M

†)− fwε(M∗) ≤ 0. If we partition the set Ω into S̄, the observed, noiseless entries, and S,
the unobserved, perturbed entries, then we could decompose fwε(M

†)− fwε(M∗) further.

0 ≥ fwε(M†)− fwε(M∗) =
1

2
‖AΩ,ε(M

† −M∗)‖2S̄,2 +
1

2
‖AΩ,ε(M

† −M∗)− wε‖2S,2 −
1

2
‖wε‖2S,2

=
1

2
‖AΩ,ε(M

† −M∗)‖2S̄,2 +
1

2
‖AΩ,ε(M

†)‖2S,2 −
1

2
ε2‖M∗‖2S,F

≥1

2
‖AΩ,ε(M

† −M∗)‖2S̄,2 −
1

2
ε2‖M∗‖2S,F

(8)
where ‖ · ‖S,2 denotes the l2/Frobenius norm of the sub-vector with entries in an arbitrary set S. Then
if we add 1

2‖M
† −M∗‖2S,2 to both sides of (8), it is easy to show

1

2
‖M† −M∗‖2F ≤

1

2

(
‖M† −M∗‖2S,F + ε2‖M∗‖2S,F

)
(9)

Here we look into the right hand side terms of (9) a bit more carefully, and realize that both
‖M† −M∗‖2S,F and ‖M∗‖2S,F are random variables with their sizes dependent on the sampling rate.
Since ‖ · ‖2S only denotes the size of the sub-matrix that are not observed (therefore perturbed by ε),
if our sample rate p is small, this norm would also be small in expectation. Combining this intuition
with concentration inequality to control deviation, gives this next theorem which serves as our main
result showing why the ε-MC problem (7) can serve as a meaningful surrogate to the original MC
problem.
Theorem 1. Assume that M† ∈ Rn×n is a symmetric, rank-r matrix that is a global optimum of (7)
with an ε ∈ (0, 1]. Assume that each entry of the original MC problem is independently observed
with probability p, then for any η ≤ p ∈ R,

‖M† −M∗‖2F ≤
1− p+ η

p− η
ε2‖M∗‖2F (10)

holds with probability at least 1− exp
(
−2η2‖d‖21/‖d‖22

)
, where d ∈ Rn2

is defined as

d := vec(M† −M∗)� vec(M† −M∗) + ε2 vec(M∗)� vec(M∗) (11)

We begin by noting that for any vector d, elementary inequalities ensure that 1 ≤ ‖d‖21/‖d‖22 ≤ n2.
This ratio increases as the values of d become more evenly distributed. In proving our theorem, we
employed Hoeffding’s inequality to achieve clear and interpretable results. While other concentration
inequalities like Bennett’s inequality can also be applied to independent, bounded variables, they do
not always provide a tighter bound and would complicate the expression, hence they are not included
in this work. We recognize the potential for employing more advanced statistical tools to refine
these bounds. Readers interested in exploring this further can find the proof of the theorem in the
Appendix.
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4 Lifted Tensor Framework with Noise

Now that we are able to reformulate the original MC problem (2) into the new ε-MC problem (7),
it presents us with a new challenge. Although now (7) admits valid RSC/RSS constants, this is
nevertheless still a difficult matrix sensing problem to solve due to its small RSC constant (or large
RIP constant). Thus, it is important that we apply an over-parametrized framework to deal with it in
order to compensate for the poor geometric uniformity.

To this end, we employ the lifted tensor framework proposed in Ma et al. (2023), since it has the
ability to deal with really small RSC constants, like those we have in ε-MC. However, in their original
work, measurements were assumed to be clean, and this is incompatible with our framework since
we hope to deal with noisy MS problems. Thus, we generalize the original results in Ma et al. (2023),
and also in its subsequent work Ma et al. (2024) to demonstrate how the inclusion of noise could
affect guarantees in when using a higher-order tensor parametrization.

First of all, we present the lifted tensor problem when our observations are corrupted by some random
noise w̃ ∈ Rm,

min
w∈Rnr◦l

‖〈A⊗l, 〈P(w),P(w)〉2∗[l]〉 − b̃⊗l‖2F , b̃ = A(M∗) + w̃ (12)

where A ∈ Rm×n×n is a three-way tensor which can be seen as a concatenation of all sensing
matrices {Ai}mi=1, and w ∈ Rnr◦l is the tensor decision variable used to increase the parametrization
of X ∈ Rn×r. Here, ⊗l simply denotes l times of repeated tensor outer product, and P is just
another constant permutation tensor used for correct multiplication. The gist of this paper is not
on the tensor formulation, thus many details are deferred to Appendix A, and interested readers
can learn more about general tensor knowledge and problem details there. For convenience’s sake,
we define f l(·) : Rn◦2l 7→ R and hl(·) : R[n×r]◦l 7→ R as f l(M) := ‖〈A⊗l,M〉 − b̃⊗l‖2F and
hl(w) = f l(〈w,w〉2∗[l]), with ∇f l(·) = ∇Mf

l(·) and ∇hl(·) = ∇wh
l(·).

In the original works, it was proven that the lifted formulation (12) is able to convert spurious solutions
in (1) to strict saddles via its drastic over-parametrization if this spurious solution is somehow far
away from the ground truth M∗. However, the first thing to note here is that for any corrupted MS
problem (its observation b is not clean and affected by noise), its global solution might not correspond
to M∗ anymore, which is the same challenge that we faced in the ε-MC formulation. This means
that spurious solutions have to be even more distant to M∗ for it be converted into strict saddles,
depending on the intensity of noise. The result is summarized in the following theorem:

Theorem 2. Consider an arbitrary second-order point X̂ ∈ Rn×r of the factorized matrix sensing
objective in the form of (1) where its observations b could be potentially corrupted by some random
noise w̃ ∈ Rm (i.e. b = b̃). Assuming that the linear operator A(·) in (1) satisfies the RSC and RSS
conditions with constants αs, Ls respectively. Then ŵ = vec(X̂)⊗l is a strict saddle of (12) with a
rank-1 symmetric escape direction if

‖M∗ − X̂X̂>‖2F ≥
Ls
αs
λr(X̂X̂

>) tr(M∗) +
‖w̃‖22
αs

(13)

with an odd l satisfying

l >
1

1− log2(2β)
, β :=

Ls tr(M∗)λr(X̂X̂
>)

αs‖M∗ − X̂X̂>‖2F − ‖w̃‖22
. (14)

The proof of this theorem is located in Appendix B. The theorem highlights how the conversion
radius from spurious solutions to strict saddles is influenced by the norm of the noise w̃. Setting
w̃ = 0 allows this theorem to coincide with Theorem 4 from Ma et al. (2024). More importantly, it is
crucial for the critical point ŵ in (12) to be a rank-1 tensor to possess a negative escape direction.
For a detailed definition of tensor rank, please see Appendix A. According to Ma et al. (2024),
employing a gradient descent (GD) algorithm with sufficiently small initialization ensures that the
search is conducted over approximately rank-1 tensors throughout the GD trajectory. This work
further establishes that this characteristic remains unchanged when b is substituted with b̃, indicating
that the observations are impacted by noise. This finding is substantiated by the following result:
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Theorem 3. Consider a finite-horizon gradient descent trajectory {wt}t∈[T ] of (12) with wt+1 =

wt − η∇hl(wt) starting from the initialization w0 = ξx⊗l0 with ξ ∈ R denoting the scale of the
initialization, η representing the step-size and x0 ∈ Rnr being an arbitrary vector with ‖x0‖22 = 1.
Then there exists t(κ, l) ≥ 1 and κ < 1 such that

λv2(wt)

λv1(wt)
≤ κ, ∀t ∈ [t(κ, l), tT ] (15)

if the initialization scale ξ is sufficiently small, where t(κ, l) is expressed as

t(κ, l) =

⌈
ln

(
‖x0‖l2
κ|v>1 x0|l

)
ln

(
1 + ησl1(U)

1 + ησl2(U)

)−1
⌉

(16)

where σ1(U) and σ2(U) denote the first and second singular values of U and v1, v2 are the associated
singular vectors, with

U = 〈Ar, b̃〉1 ∈ Rnr×nr, Ar := Ir �2,3 A (17)

The proof of this theorem can again be found in Appendix B. If x0 is initialized according to
Lemma 14 in Ma et al. (2024), then we can also show that wt will be κ-rank-1 as soon as t �
ln (1/κ) ln

(
(1 + ησl1(U))/(1 + ησl2(U))

)−1
, if ξ is chosen as a function of U, r, n, Ls, without the

need for it to be arbitrarily small. However, since such results are not the main focal point of this work,
we will not elaborate here for the sake of succinctness. The main takeaway is that by incorporating
the noise w̃ into our objective (12), the ability of gradient descent algorithms to induce implicit bias
is untouched. It is also worth noting that the results presented in this subsection applies to all tensor
problems in the form of (12), which are lifted from general noisy matrix sensing problems, and not
specific to our ε-MC problem.

5 Main Results

Our goal is to achieve a globally optimal solution for the ε-MC problem because it closely represents
the M∗ solution. However, this becomes challenging due to the αs constant in equation (7), which
depends on the small value of ε. To address this, rather than solving the problem using its basic
matrix (BM) factorized form (as shown in equation (1)), which lacks global optimization guarantees,
we apply more complex techniques with over-parametrization. We previously demonstrated that the
lifted tensor framework (12), independent of the specific ε-MC problem, effectively handles noise in
the observed data (when b becomes b̃), with the quality of the guarantee degrading as the magnitude
of corruption increases.

By integrating these methodologies, we demonstrate a robust way to approximately solve the generic
MC problem (as formulated in equation (2)) while still providing reliable global solutions, as
elaborated in our main theorem below

Theorem 4. Consider the matrix completion problem of completing a n × n, rank-r matrix M∗,
where Ω ⊆ [n] × [n] denotes the set of observed entries and Ω̄ denotes the unobserved entries.
Introduce a perturbation ε ∈ (0, 1] to formulate an ε-MC problem as per (7). Applying the tensor
framework described in (12) to this ε-MC problem yields the following results:

For any rank-1 critical point ŵ = vec(X̂)⊗l of (12), if it is a second-order point (local minima), this
implies that

‖M∗ − X̂X̂>‖F <
1

ε
λr(X̂)

√
tr(M∗) + e1 (18)

holds with probability at least q, under the condition that l is odd and meets the requirement:

l >
1

1− log2(2β)
, β :=

tr(M∗)λr(X̂X̂
>)

ε2
(
‖M∗ − X̂X̂>‖2F − e2

) . (19)

For all instances of the MC problem, the following hold:

e1 = ‖M∗‖Ω̄,F , e2 = ‖M∗‖2Ω̄,F , q = 1 (20)
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Alternatively, if all entries are observed independently with probability p, the expressions modify to:

e1 =

√
1− p+ η

p− η
ε‖M∗‖F , q = 1− exp

(
−2η2‖d‖21/‖d‖22

)
, e2 = 0 (21)

where d is defined as per (11).

Our main theorem builds directly on the results of Theorem 2, applying specific parameters (Ls = 1,
αs = ε2) along with the definition of wε from equation (6). This leads to a deterministic outcome
where the probability q equals 1. However, there’s a critical aspect to consider: the transition from a
spurious solution is contingent upon the condition described in (18). A significant challenge arises if
‖M∗‖2

Ω̄,F
is large, potentially rendering this condition overly lenient. Here, the utility of Theorem 1

becomes evident. Under its probabilistic framework, we apply a triangle inequality to reduce the

bound e1 to
√

1−p+η
p−η ε‖M∗‖F . This adjustment is particularly valuable, as the presence of ε and p

can significantly diminish the error term, effectively countering the inaccuracies introduced by our
approximation method. The proof to this theorem can be found in Appendix B.

This theorem presents a new approach to matrix completion that is not reliant on the incoherence
parameter or strict observation modes, diverging from established results like those in Ge et al. (2017);
Candes and Plan (2010), which require a high sample rate on the magnitude of O(µ0n

1.2r log(n))
with unknown constant scale. Our method offers a flexible tradeoff between observation probability
and solution accuracy, effectively managing a gradual degradation in assurance. Furthermore, with the
introduction of ε, it enables us to actively trade-off solution accuracy with computational complexity.
This adjustment is particularly effective in noisy scenarios where some degree of inaccuracy is
unavoidable, making our approach both practical and justifiable for real-world applications.

The results of Theorem 4 only apply to rank-1 critical points. To adhere to this, we can start our
gradient descent algorithm at a small scale, leveraging Theorem 3 to maintain the rank constraint.
Theorem 5 in Appendix A summarizes the results, and it is not presented here as its complex details
could detract from the central narrative of Theorem 4.

6 Numerical Experiments

In this section, we numerically demonstrate the effectiveness of our method1 against traditional BM
based and semi-definite relaxation (SDP) methods.

We first hope to visualize the probabilistic guarantees made in Theorem 1, since it could be rather
abstract to understand in its rigorous form. In Figure 1, we plot the probability lower-bound for
‖M† −M∗‖2F to be smaller than a given value with respect to different ε values. For instance, say
in our plot the x-value is a, y-value is b, and the contour value (represented by color) is c, then this
means that the normed difference betweenM† andM∗ will be smaller than a with probability c given
that ε = b. We plot this graph for p values of 0.3, 0.4 and 0.5. As one can observe, as p increases, the
normed difference will be much smaller with respect to all ε values, and even when p = 0.3, which
is rather low, M† will still be close to M∗ with high probability given a small ε. Note here M† is
chosen as a random rank-r matrix close to M∗ for good visualization since it is intractable to actually
compute (hence the probabilistic guarantee).

To further the investigation, we introduce a benchmark matrix completion problem described in
Yalçın et al. (2022), known to be difficult:

Ω = {(i, i), (i, 2k), (2k, i)| ∀i ∈ [n], k ∈ [bn/2c]}, (22)

M∗ is also chosen identically to Example 1 from Yalçın et al. (2022) to ensure consistency. The
study applies the BM factorized formulation (2), and our approach to address (22). Our approach
employs the lifted problem (12) with l = 3, culminating in a tensor wT after T iterations of gradient
descent. A tensor PCA algorithm (Ma et al., 2024) extracts the principal component XT ∈ Rn×r,
approximating wT as vec(XT )⊗l. XT then serves as the solution to the original problem (2). A
successful instance of gradient descent is defined by ‖XTX

>
T −M∗‖F ≤ 0.05. Preferring the

success rate metric over average reconstruction error minimizes the impact of outliers and reduces

1’https://github.com/anonpapersbm/mc_noisy_ms’,run on M1 Max Macbook Pro
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Figure 1: Probability Lower-Bound for Theorem 1.

variance, providing a more reliable measure of efficacy. This approach is also tested against a standard
model where each entry of M∗ is observed with a probability p = 0.15, since this was the main focus
of classic matrix completion literature. Results are documented in Figure 2.

(a) Problem Instance (22) (b) Problem Instance with Independent Entires

Figure 2: Success Rates for Our Approach compared to Standard Approaches.

Figure 2 clearly demonstrates the superior success rate of the proposed method compared to both the
BM formulation and SDP relaxation (Candès and Tao, 2010) across different settings and problem
sizes n. It is noteworthy that the SDP relaxation, being a convex problem, is executed only once
per scenario, as it reliably converges to a global solution. However, for the specific instance (22),
the SDP approach will be invalid since there are other SDP matrices N such that NΩ = M∗Ω. For
the independent observation model, the variability of Ω necessitates running 10 distinct problem
instances for each size n, with each instance undergoing 20 trials to estimate the success rate. This
testing approach showcases the higher success rate of the proposed method. Additionally, the convex
relaxation typically surpasses the BM formulation, as indicated in Figure 2b. Experimental conditions
included a ε = 5 ∗ 10−5, a learning rate of 2e-2, an initialization scale of ξ = 10−4 for (12), and the
utilization of the Adam optimizer (Kingma and Ba, 2014) for all experiments except those involving
the semi-definite problem, where the open-source SCS solver was employed.

7 Conclusion

The methodologies unveiled in this study signify a potential paradigm shift within the realms of
machine learning and optimization. By challenging the conventional strategy of minimizing noise to
solve complex problems, our research introduces a controlled noise mechanism that not only elevates
theoretical promises but also enables a strategic management of trade-offs in problem-solving. The
developed ε-MC framework enhances practical application by allowing the integration of matrix
sensing techniques, providing a flexible framework that could benefit general matrix completion
problems.
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A Additional Details for Noisy Lifted Framework

A.1 Additional Definitions

Definition 3 (Tensor). As a generalization of the way vectors are used to parametrize finite-
dimensional vector spaces, we use arrays to parametrize tensors generated from product of finite-
dimensional vector spaces, as per Comon et al. (2008). In particular, we define an l-way array as
such:

a = {ai1i2...il |1 ≤ ik ≤ nk, 1 ≤ k ≤ l} ∈ Rn1×···×nl

Note that in this paper tensors and arrays can be regarded as synonymous since there exists an
isomorphism between them. Moreover, if n1 = · · · = nl, then we call this tensor(array) an l-
order(way), n-dimensional tensor. For the convenience of tensor representation, we use the notation
Rn◦l with n ◦ l := n× · · · × n. In this work, tensors are denoted with bold variables, and other fonts
are reserved for matrices, vectors, and scalars unless specified otherwise.
Definition 4 (Symmetric Tensor). Similar to the definition of symmetric matrices, for an order-l
tensor a with the same dimensions (i.e., n1 = · · · = nl), also called a cubic tensor, it is said that the
tensor is symmetric if its entries are invariance under any permutation of their indices:

aiσ(1)···iσ(l) = ai1···il ∀σ, i1, . . . , il ∈ {1, . . . , n}
where σ ∈ Gl denotes a specific permutation and Gl is the symmetric group of permutations on
{1, . . . , l}. We denote the set of symmetric tensors as Sl(Rn).
Definition 5 (Rank of Tensors). The rank of a cubic tensor a ∈ Rn◦l is defined as

rank(a) = min{r|a =

r∑
i=1

ui ⊗ vi ⊗ · · · ⊗ wi}

for some vector ui, . . . , wi ∈ Rn. Furthermore, according to Kolda (2015), if a is a symmetric tensor,
then it can be decomposed as:

a =

r∑
i=1

λiui ⊗ · · · ⊗ ui :=

r∑
i=1

λiu
⊗l
i

and the rank is conveniently defined as the number of nonzero λi’s, which is very similar to the rank
of symmetric matrices indeed. The most important concept in our paper is rank-1 tensors, and for any
tensor a, a necessary and sufficient condition for it to be rank-1 is that

a = u⊗l

for some u ∈ Rn.
Definition 6 (Tensor Multiplication). Outer product is an operation carried out on a pair of tensors,
denoted as ⊗. The outer product of 2 tensors a and b, respectively of orders l and p, is a tensor of
order l + p, denoted as c = a⊗ b such that:

ci1...ilj1...jp = ai1...ilbj1...jp

When the 2 tensors are of the same dimension, this product is such that⊗ : Rn◦l×Rn◦p 7→ Rn◦(l+p).
Henceforth, we use the shorthand notation

a⊗ · · · ⊗ a︸ ︷︷ ︸
l times

:= a⊗l

We also define an inner product of two tensors. The mode-q inner product between the 2 aforemen-
tioned tensors having the same q-th dimension is denoted as 〈a,b〉q. Without loss of generality,
assume that q = 1 and

[〈a,b〉q]i2...ilj2...jp =

nq∑
α=1

aαi2...ilbαj2...jp

Note that when we write 〈·, ·〉q , we count the q-th dimension of the first entry. Indeed, this definition
of inner product can also be trivially extended to multi-mode inner products by just summing over all
modes, denoted as 〈a,b〉q,...,s.
Lemma 2 (Section 10.2 Petersen et al. (2008)). For four arbitrary matricesA,B,C,D of compatible
dimensions, it holds that

〈A⊗B,C ⊗D〉2,4 = AC ⊗BD (23)
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A.2 Formulation Details

As noted in our main formulation (12), the decision variable w is a tensor of dimension nr×· · ·×nr,
since it serves as a repeated outer product of vec(X) with X ∈ Rn×r being our original decision
variable in (1) (here we assume rsearch = r). The permutation P is needed in order to convert
w ∈ Rnr◦l back to R[n×r]◦l in order to do meaningful inner products. P ∈ Rn×r×nr is defined as

〈P, vec(X)〉3 = X ∀X ∈ Rn×r, n, r ∈ Z+

Such P can be easily constructed via filling appropriate scalar "1"s in the tensor. Via Lemma A.1, we
also know that

〈P⊗l, vec(X)⊗l〉3∗[l] = (〈P, vec(X)〉3)⊗l = X⊗l (24)

Notationally, we abbreviate 〈P⊗l,w〉3∗[l] as P(w) for enhanced readability for an arbitrary tensor w
with dimension greater or equal to 2.

Since we also make extensive use of first and second order critical points of (12), we present them
here for accessibility:

Lemma 3. The tensor ŵ ∈ Rnr◦l is an SOP of (12) if and only if

〈∇f l(〈P(ŵ),P(ŵ)〉2∗[l]),P(ŵ)〉2∗[l] = 0, (25a)

2〈∇f l(〈P(ŵ),P(ŵ)〉2∗[l]), 〈P(∆),P(∆)〉2∗[l]+
‖〈A⊗l, 〈P(ŵ),P(∆)〉2∗[l] + 〈P(∆),P(ŵ)〉2∗[l]〉‖2F ≥ 0 ∀∆ ∈ Rnr◦l

(25b)

with (25b) being a necessary and sufficient condition for ŵ to be a FOP and ∇f lw(M) is defined as

∇f lw(M) = 〈(A⊗l)∗A⊗l,M〉 − [〈A∗A,M∗〉+ 〈A∗, w̃〉]⊗l (26)

The proof to this lemma is highly technical and can be obtained by slightly changing the proof to
Lemma 7 in Ma et al. (2024) by changing b = A(M∗) to b̃ = A(M∗) + w̃ defined above.

Next, we present a technical extension of Theorem 4 and Theorem 3, showing how gradient descent
initialized with small scale can help ensure that second-order points of lifted version of (7) remain
very close to M∗ along the optimization trajectory

Theorem 5. Consider a generic matrix completion problem under the same premise as given in
Theorem 4. Assume that the symmetric tensor ŵ ∈ Rnr◦l is a second-order point (local minima)
of (12) that is κ-rank-1 with κ ≤ O(1/‖M∗‖2F ). This can be achieved by initializing the vanilla
gradient algorithm at w0 = ξx⊗l0 with a sufficiently small ξ > 0 ∈ R. Then after iterations t(κ, l)
given in (16), Theorem 3 ensures that all tensors along the trajectory will become κ-rank-1.

If ŵ’s major spectral decomposition is given as ŵ = λS x̂
⊗l + ŵ† with x̂ ∈ Rnr being a FOP of (7)

(ensured by Proposition 2 in Ma et al. (2024)), we know that

‖M∗ − X̂X̂>‖F <
1

ε
λr(X̂)

√
tr(M∗) +O(

√
rκ1/2l) + e1 (27)

holds with probability at least q, under the condition that l is odd and meets the requirement:

l >
1

1− log2(2β)
, β :=

tr(M∗)λr(X̂X̂
>)

ε2
(
‖M∗ − X̂X̂>‖2F −O(rκ1/l)− e2

) . (28)

where e1, e2, and q are identical to those given in Theorem 4 depending on different MC instances.

The proof of this Theorem is omitted because it directly follows from Theorem 4, Theorem 3, and
Theorem 2 in Ma et al. (2024).
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B Missing Proofs

Proof to Theorem 1. To begin with, we reiterate our elementary results which follows from the
definition of M† and that of (7):

0 ≥ fwε(M†)− fwε(M∗)

=
1

2
‖AΩ,ε(M

† −M∗)‖2S̄,2 +
1

2
‖AΩ,ε(M

† −M∗)− wε‖2S,2 −
1

2
‖wε‖2S,2

=
1

2
‖AΩ,ε(M

† −M∗)‖2S̄,2 +
1

2
‖AΩ,ε(M

†)‖2S,2 −
1

2
ε2‖M∗‖2S,2

≥1

2
‖AΩ,ε(M

† −M∗)‖2S̄,2 −
1

2
ε2‖M∗‖2S,2

This follows from the simple observation that

(wε)i = −ε vec(M∗)i ∀ i ∈ [n2]

Then moving 1
2ε

2‖M∗‖2S,2 to the left hand side, and adding 1
2‖M

† −M∗‖2S,2 to both sides gives

‖M† −M∗‖2F ≤ ‖M† −M∗‖2S + ε2‖M∗‖2S,2 (29)

If we define a new vector d ∈ Rn2

in which

d := vec(M† −M∗)� vec(M† −M∗) + ε2 vec(M∗)� vec(M∗)

then we know that

di =
(
vec(M†)i − vec(M∗)i

)2
+ ε2 vec(M∗)2

i ≥ 0 ∀ i ∈ [n2]

So if we further define a series of random variables {r1, r2, . . . , rn2} with

ri =

{
0 with probability p
di with probability 1− p (30)

Then we know that

‖M† −M∗‖2S + ε2‖M∗‖2S,2 =

n2∑
i=1

ri := R (31)

because for any matrix M ∈ Rn1×n2 , we have

‖M‖2S =

n1n2∑
i

m2
i , mi =

{
0 with probability p
vec(M)i with probability 1− p

Then we simply acknowledge that 0 ≤ ri ≤ di almost surely, which sets up the premise to use
Hoeffding’s inequality (Hoeffding, 1994). This concentration inequality gives that

P (R ≤ E[R] + t) ≥ 1− exp

(
−2t2∑n2

i (di − 0)2

)
= 1− exp

(
−2t2

‖d‖22

)
(32)

First of all, we could easily derive that

E[R] =

n2∑
i

(1− p)
[(

vec(M†)i − vec(M∗)i
)2

+ ε2 vec(M∗)2
i

]
= (1− p)

(
‖M† −M∗‖2F + ε2‖M∗‖2F

) (33)

Therefore combining (29), (32) and (33) we have

P
(
‖M† −M∗‖2F ≤ (1− p)

(
‖M† −M∗‖2F + ε2‖M∗‖2F

)
+ t
)
≥ 1− exp

(
−2t2

‖d‖22

)
(34)

Then we can choose
t = η

(
‖M† −M∗‖2F + ε2‖M∗‖2F

)
= η‖d‖1
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for some constant η ≤ p. This will then transform (34) into

P
(
‖M† −M∗‖2F ≤ (1− p+ η)

(
‖M† −M∗‖2F + ε2‖M∗‖2F

))
≥ 1− exp

(
−2t2

‖d‖22

)
=⇒ P

(
(p− η)‖M† −M∗‖2F ≤ (1− p+ η)ε2‖M∗‖2F

)
≥ 1− exp

(
−2η2‖d‖21
‖d‖22

)
=⇒ P

(
‖M† −M∗‖2F ≤

1− p+ η

p− η
ε2‖M∗‖2F

)
≥ 1− exp

(
−2η2‖d‖21
‖d‖22

) (35)

which proves our desired result directly.

Proof of Theorem 2. First of all, we hope to decompose the Hessian of (1) at a second order point
X̂ ∈ Rn×r. Classic matrix sensing literatures like Ha et al. (2020); Zhang et al. (2021); Li et al.
(2019) give that the second-order critical condition of (1) are given as

∇f(X̂X̂>)X̂ = 0, (36)

2〈∇f(X̂X̂>), UU>〉+ [∇2f(X̂X̂>)](X̂U> + UX̂>, X̂U> + UX̂>) ≥ 0 ∀U ∈ Rn×r (37)

with (36) being the first order critical condition. Moreover, since the sensing matrices {Ai}i∈[m] can
be assumed be to symmetric without loss of generality (Zhang et al., 2021), we have that

[∇2f(X̂X̂>)](X̂U> + UX̂>, X̂U> + UX̂>) = 4[∇2f(X̂X̂>)](X̂U>, X̂U>).

We then could decompose LHS of (37) as 2C1 + 4C2 where

C1 := 〈∇f(X̂X̂>), UU>〉, C2 := [∇2f(X̂X̂>)](X̂U>, X̂U>)

Given the assumption that (1) obeys some RSS condition, it is possible to upper-bound C2 by
observing

[∇2f(X̂X̂>)](X̂U> + UX̂>, X̂U> + UX̂>) ≤ Ls‖X̂U> + UX̂>‖2F
Therefore, if want to somehow create an negative escape direction for X̂ , it is important that we
find a U such that C1 is negative and large in magnitude, and then amplify this term via tensor
parametrization. To do so, we first do a more in-depth analysis of ∇f(X̂X̂>). As mentioned above,
since ∇f(·) can be assumed to be symmetric, one can select u ∈ Rn such that u>∇f(x̂x̂>)u =
λmin(∇f(x̂x̂>)). Then via the definition of RSC we have

f(M∗) ≥ f(X̂X̂>) + 〈∇f(X̂X̂>),M∗ − X̂X̂>〉+
αs
2
‖X̂X̂> −M∗‖2F . (38)

With X̂ being a first-order point, according to (36)

∇f(X̂X̂>)X̂ = 0 =⇒ 〈∇f(X̂X̂>), X̂X̂>〉 = 0

Therefore, if in (1) our b is corrupted as A(M∗) + w̃, then plugging it back into (38) gives

〈∇f(X̂X̂>),M∗〉 ≤ −αs
2
‖x̂x̂> −M∗‖2F + f(M∗)− f(XX>)

≤ −αs
2
‖x̂x̂> −M∗‖2F + f(M∗)

= −αs
2
‖x̂x̂> −M∗‖2F +

‖w̃‖22
2

(39)

where the second inequality follows from the fact that f(·) ≥ 0 in its entire domain and the last
inequality follows from f(M∗) = 1/2‖A(M∗) − A(M∗) − w̃‖22 = ‖w̃‖22/2. Furthermore, since
both∇f(X̂X̂>) and M∗ are assumed to be positive semidefinite,

〈∇f(X̂X̂>),M∗〉 ≥ λmin(∇f(X̂X̂>)) tr(M∗)

which implies that

λmin(∇f(X̂X̂>)) ≤ −αs‖X̂X̂
> −M∗‖2F + ‖w̃‖22
2 tr(M∗)

(40)
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Furthermore, (13) gives us
‖X̂X̂> −M∗‖2F ≥ ‖w̃‖22/αs

since Ls
αs
λr(X̂X̂

>) tr(M∗) ≥ 0 by definition. This means that

λmin(∇f(X̂X̂>)) ≤ −αs‖X̂X̂
> −M∗‖2F + ‖w̃‖22
2 tr(M∗)

≤ 0 (41)

Thus, with this result equipped, we can further find a U that makes C1 small. In the most convenient
manner, we first consider the eigenvector u ∈ Rn of∇f(X̂X̂>) associated with λmin(∇f(X̂X̂>)).
Additionally we consider q ∈ Rr to be the r-th singular value of X̂ , with

‖X̂q‖2 = σr(X̂), ‖q‖2 = 1

Then choosing U ∈ Rn×r = uq> leads to

C1 = 〈∇f(X̂X̂>), UU>〉 = 〈∇f(X̂X̂>), uu>〉 = −G

where G := −λmin(∇f(X̂X̂>)) ≥ 0. By recalling X̂>u = 0 according to the first-order condition
(36), we can further bound C2 with this chocie of U as

Ls‖X̂U> + UX̂>‖2F = Ls‖u(X̂q)> + (X̂q)u>‖2F
= 2Ls‖X̂q‖2F + 2Ls(q

>(X̂>u))2

= 2Lsλr(X̂X̂
>),

leading to

C2 ≤
1

2
Lsλr(X̂X̂

>)

Now, if we choose ∆ = vec(U)⊗l for the aforementioned U ∈ Rn×r, the LHS of (25b) can be
expressed as:

2(〈A, X̂X̂>〉>2,3〈A, uu>〉2,3)l − 2
(
(〈A,M∗〉2,3 + w̃)>〈A, uu>〉2,3

)l
+ 4(‖〈A, X̂U>〉2,3‖22)l

≤2(λmin(∇f(X̂X̂>)))l + 4Cl2

=2Cl1 + 4Cl2
(42)

where the inequality follows from:

an − bn ≤ (a− b)n, ∀b ≥ a ≥ 0

Here, since a− b = C1 ≤ 0, the above inequality can be used. As a result,

LHS of (25b) ≤ −2Gl︸ ︷︷ ︸
Part 1

+
2

2l−1
Llsλr(X̂X̂

>)l︸ ︷︷ ︸
Part 2

We know since G ≥ 0, Part 1 is always negative assuming l is odd, and Part 2 is always positive.
Therefore, it suffices to find an order l such that

Gl > (1/2l−1)Llsλr(X̂X̂
>)l (43)

Conveniently, (41) says that

G ≥ αs‖M∗ − X̂X̂>‖2F − ‖w̃‖22
2 tr(M∗)

, (44)

which can be used to derive sufficient condition for (43). Therefore, if(
αs‖M∗ − X̂X̂>‖2F − ‖w̃‖22

2 tr(M∗)

)l
> (1/2l−1)Llsλr(X̂X̂

>)l,
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we can conclude that (43) holds, which implies that the LHS of (25b) is negative, directly proving that
X̂⊗l is not an SOP anymore. Elementary manipulations of the above equation give that a sufficient
condition is

‖M∗ − X̂X̂>‖2F − ‖w̃‖22/αs > 21/lLs
αs
λr(X̂X̂

>) tr(M∗) (45)

We now consider (13), which means that

λr(X̂X̂
>) ≤ αs‖M∗ − X̂X̂>‖2F − ‖w̃‖22

Ls tr(M∗)
(46)

Subsequently, define a constant γ such that

Lsλr(X̂X̂
>) = γ

[
αs‖M∗ − X̂X̂>‖2F − ‖w̃‖22

2 tr(M∗)

]

Then, (44) and (46) together imply that 1 ≤ γ < 2. Using this simplified notation, our sufficient
condition (45) becomes

1 >
γ

2(l−1)/l
(47)

Given 1 ≤ γ < 2, there always exists a large enough l such that (47) holds, which proves that LHS
of (25b) is negative, proving that vec(X̂)⊗l is a strict saddle, concluding the proof.

To derive a sufficient l, we simply acknowledge

γ =
2Ls tr(M∗)λr(X̂X̂

>)

αs‖M∗ − X̂X̂>‖2F − ‖w̃‖22
:= 2β

and that β ≤ 1 due to assumption (13). Therefore, for (47) to hold true, it is enough to have

2(l−1)/l > 2β =⇒ l − 1

l
> log2(2β) =⇒ l >

1

1− log2(2β)

Proof of Theorem 3. First of all, we hope to decompose the GD trajectory of (12) {wt}Tt=0 as follows:

wt+1 = 〈Zt,w0〉 −Et := w̃t −Et (48)

where

Zt := (I + η〈A⊗lr , b̃⊗l〉)t, Ar = Ir �2,3 A

Et :=

t∑
i=1

(I + η〈A⊗lr , b̃⊗l〉)t−iÊi

Êi := η〈〈(Al
r)
∗Al, 〈P(wi−1),P(wi−1)〉2∗[l]〉,wi−1〉2∗[l]

(Al
r)
∗Al := 〈(Ar)

⊗l,A⊗l〉3,6,...,3l ∈ R[nr×nr×n×n]◦l

This can be proved via induction where

w1 =
(
I + η〈A⊗lr , b̃⊗l − (A⊗l)∗〈P(w0),P(w0)〉

)
w0

= (I + η〈A⊗lr , b̃⊗l〉)w0 − η〈(Al
r)
∗Al, 〈P(w0),P(w0)〉〉w0

= 〈Z1,w0〉 −E1
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This serves as our base case, and the induction step can be proven as

wt+1 =
(
I + η〈A⊗lr , b̃⊗l − (A⊗l)∗〈P(wt),P(wt)〉

)
wt

= (I + η〈A⊗lr , b̃⊗l〉)wt − η〈(Al
r)
∗Al, 〈P(wt),P(wt)〉〉wt

= (I + η〈A⊗lr , b̃⊗l〉)wt − Êt+1

= (I + η〈A⊗lr , b̃⊗l〉)

(
w̃t −

t∑
i=1

(I + η〈A⊗lr , b̃⊗l〉)t−iÊi

)
− Êt+1

= w̃t+1 −
t∑
i=1

(I + η〈A⊗lr , b̃⊗l〉)t+1−iÊi − Êt+1

= w̃t+1 −
t+1∑
i=1

(I + η〈A⊗lr , b̃⊗l〉)t+1−iÊi

= w̃t+1 −Et

Therefore, we can then use a version of Lemma 13 and Lemma 2 in Ma et al. (2024) with U =
〈A∗rA,M∗〉 replaced with U = 〈Ar, b̃〉1 to prove this theorem, following the steps in proof to
Theorem 1 in Ma et al. (2024).

Proof to Theorem 4. For the general matrix completion case, as promised by Lemma 1, the theorem
is proved by substituting Ls = 1, αs = ε2 into Theorem 4, and since this is a deterministic result, it
happens with probability 1, meaning that for any second-order point ŵ = X̂⊗l of (12), it satisfies
that

‖M∗ − X̂X̂>‖F <

√
Ls
αs
λr(X̂X̂>) tr(M∗) +

ε2‖M∗‖2
Ω̄,F

ε2

=

√
Ls
αs
λr(X̂X̂>) tr(M∗) + ‖M∗‖2

Ω̄,F

≤
√
Ls
αs
λr(X̂X̂>) tr(M∗) + ‖M∗‖Ω̄,F

=
1

ε
λr(X̂)

√
tr(M∗) + ‖M∗‖Ω̄,F

(49)

where l has to obey equation (14) as stated in Theorem 2.

In the case of each entry of M∗ being observed independently with probability p, we first apply
Theorem 4 with w̃ = 0 to (7), meaning that we first assume that no noise exists in b. This is the case
where we are actually trying to recover the global solution of (7), denoted as M†. This means that for
any rank-1 critical point ŵ = X̂⊗l of (12), it is a second-order point only if

‖X̂X̂> −M†‖2F <
1

ε2
λr(X̂X̂

>) tr(M∗) (50)

holds, when l is odd and satisfies

l >
1

1− log2(2β)
, β :=

Ls tr(M∗)λr(X̂X̂
>)

ε2‖M∗ − X̂X̂>‖2F
. (51)

The above statement holds deterministically. However, Theorem 1 also tells us that

‖M† −M∗‖2F ≤
1− p+ η

p− η
ε2‖M∗‖2F

with high probability, so then by a triangle inequality we have that the conversion criterion above
transforms to

‖X̂X̂> −M∗‖F ≤ ‖X̂X̂> −M†‖F + ‖M† −M∗‖F

<
λr(X̂)

√
tr(M∗)

ε
+

√
1− p+ η

p− η
ε‖M∗‖F

(52)

with the same probability stated in Theorem 1, thereby concluding the proof.
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